Quasi-invariant and Super-coinvariant Polynomials for the Generalized Symmetric Group

نویسنده

  • J. - C. AVAL
چکیده

The aim of this work is to extend the study of super-coinvariant polynomials, introduced in [2, 3], to the case of the generalized symmetric group Gn,m, defined as the wreath product Cm ≀ Sn of the symmetric group by the cyclic group. We define a quasi-symmetrizing action of Gn,m on Q[x1, . . . , xn], analogous to those defined in [12] in the case of Sn. The polynomials invariant under this action are called quasi-invariant, and we define super-coinvariant polynomials as polynomials orthogonal, with respect to a given scalar product, to the quasi-invariant polynomials with no constant term. Our main result is the description of a Gröbner basis for the ideal generated by quasi-invariant polynomials, from which we dedece that the dimension of the space of super-coinvariant polynomials is equal to m Cn where Cn is the n-th Catalan number. Résumé. Le but de ce travail est d’étendre l’étude des polynômes super-coinvariants (définis dans [2]), au cas du groupe symétrique généralisé Gn,m, défini comme le produit en couronne Cm ≀ Sn du groupe symétrique par le groupe cyclique. Nous définissons ici une action quasi-symétrisante de Gn,m sur Q[x1, . . . , xn], analogue à celle définie dans [12] dans le cas de Sn. Les polynômes invariants sous cette action sont dits quasi-invariants, et les polynômes super-coinvariants sont les polynômes orthogonaux aux polynômes quasi-invariants sans terme constant (pour un certain produit scalaire). Notre résultat principal est l’obtention d’une base de Gröbner pour l’idéal engendré par les polynômes quasi-invariants. Nous en déduisons alors que la dimension de l’espace des polynômes super-coinvariants est m Cn où Cn est le n-ième nombre de Catalan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jack Polynomials and the Coinvariant Ring of G

We study the coinvariant ring of the complex reflection group G(r, p, n) as a module for the corresponding rational Cherednik algebra H and its generalized graded affine Hecke subalgebra H. We construct a basis consisting of non-symmetric Jack polynomials, and using this basis decompose the coinvariant ring into irreducible modules forH. The basis consists of certain non-symmetric Jack polynomi...

متن کامل

JACK POLYNOMIALS AND THE COINVARIANT RING OF G(r, p, n)

We study the coinvariant ring of the complex reflection group G(r, p, n) as a module for the corresponding rational Cherednik algebra H and its generalized graded affine Hecke subalgebra H. We construct a basis consisting of non-symmetric Jack polynomials, and using this basis decompose the coinvariant ring into irreducible modules for H. The basis consists of certain non-symmetric Jack polynom...

متن کامل

Hecke Algebra Actions on the Coinvariant Algebra

Two actions of the Hecke algebra of type A on the corresponding polynomial ring are introduced. Both are deformations of the natural action of the symmetric group on polynomials, and keep symmetric functions invariant. An explicit combinatorial formula is given for the resulting graded characters on the coinvariant algebra.

متن کامل

Invariant and Coinvariant Spaces for the Algebra of Symmetric Polynomials in Non-Commuting Variables

We analyze the structure of the algebra K〈x〉n of symmetric polynomials in non-commuting variables in so far as it relates to K[x]n , its commutative counterpart. Using the “place-action” of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of K〈x〉n analogous to the classical theorems of Chevalley, Sh...

متن کامل

Generalized Exponents and Forms

We consider generalized exponents of a finite reflection group acting on a real or complex vector space V . These integers are the degrees in which an irreducible representation of the group occurs in the coinvariant algebra. A basis for each isotypic component arises in a natural way from a basis of invariant generalized forms. We investigate twisted reflection representations (V tensor a line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008